Long-term intermittent hypoxia: reduced excitatory hypoglossal nerve output.

نویسندگان

  • Sigrid C Veasey
  • Guanxia Zhan
  • Polina Fenik
  • Domenico Pratico
چکیده

Humans with long-standing sleep apnea show mixed responses to serotonergic therapies for obstructive sleep apnea. We hypothesize that long-term intermittent hypoxia may result in oxidative injury to upper airway motoneurons, thereby diminishing serotonergic motoneuronal excitation. Unilateral serotonin and glutamate agonist and antagonist microinjections into the hypoglossal motor nuclei in adult rats exposed to 3 weeks of intermittent hypoxia showed reduced hypoglossal nerve responsiveness (logEC50) for serotonin and N-methyl-D-aspartate. However, long-term intermittent hypoxia did not appear to alter hypoglossal response to alpha-amino-3-hydroxy-methylisoxazole-4-propionic acid injections. There was no reduction in hypoglossal motoneuron soma number or in serotonergic postsynaptic receptor mRNA copy numbers within single-cells; in contrast, there was an increase in isoprostanes in the dorsal medulla. Systemic 4-hydroxyl-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol) throughout exposure to intermittent hypoxia improved the EC50 for serotonin to a larger extent than glutamate and normalized medullary isoprostanes. Protein kinase C activity within the hypoglossal nucleus was increased after long-term intermittent hypoxia. These results suggest that long-term intermittent hypoxia reduces serotonergic and N-methyl-D-aspartate excitatory output of hypoglossal nerves, and that reduced excitatory responsiveness and lipid peroxidation are largely prevented with superoxide dismutase treatment throughout hypoxia/reoxygenation. Similar alterations in neurochemical responsiveness may occur in select persons with obstructive sleep apnea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power spectral analysis of hypoglossal nerve activity during intermittent hypoxia-induced long-term facilitation in mice.

Power spectral analyses of electrical signals from respiratory nerves reveal prominent oscillations above the primary rate of breathing. Acute exposure to intermittent hypoxia can induce a form of neuroplasticity known as long-term facilitation (LTF), in which inspiratory burst amplitude is persistently elevated. Most evidence indicates that the mechanisms of LTF are postsynaptic and also that ...

متن کامل

Respiratory activity in the 6-hydroxydopamine model of Parkinson's disease in the rat.

Respiratory disturbances accompany Parkinson's disease. Weakness of the respiratory muscles or lowering of central respiratory drive might be responsible for respiratory disability. Striatal injection of 6-hydroxydopamine (6-OHDA) simulates motor symptoms of Parkinson's disease in the rat. Present study investigated whether unilateral infusion of 6-OHDA into the striatum may evoke respiratory d...

متن کامل

Effect of chronic intermittent hypoxia on noradrenergic activation of hypoglossal motoneurons.

In obstructive sleep apnea patients, elevated activity of the lingual muscles during wakefulness protects the upper airway against occlusions. A possibly related form of respiratory neuroplasticity is present in rats exposed to acute and chronic intermittent hypoxia (CIH). Since rats exposed to CIH have increased density of noradrenergic terminals and increased α(1)-adrenoceptor immunoreactivit...

متن کامل

Time-dependent hypoxic ventilatory responses in rats: effects of ketanserin and 5-carboxamidotryptamine.

We hypothesized that the 5-hydroxytryptamine (5-HT) active drugs ketanserin and 5-carboxamidotryptamine (5-CT) would modulate time-dependent hypoxic phrenic and hypoglossal responses, including 1) short-term hypoxic response, 2) posthypoxia frequency decline (PHFD), and 3) long-term facilitation (LTF) of respiratory motor output. Phrenic and hypoglossal nerve activities were recorded in urethan...

متن کامل

Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis.

Respiratory long-term facilitation (LTF) is a form of serotonin-dependent plasticity induced by intermittent hypoxia. LTF is manifested as a long-lasting increase in respiratory amplitude (and frequency) after the hypoxic episodes have ended. We tested the hypotheses that LTF of phrenic amplitude requires spinal serotonin receptor activation and spinal protein synthesis. A broad-spectrum seroto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory and critical care medicine

دوره 170 6  شماره 

صفحات  -

تاریخ انتشار 2004